Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Определение
- Однородные дифференциальные линейные уравнения второго порядка
- Неоднородные дифференциальные линейные уравнения второго порядка
- Методы решения других видов дифференциальных уравнений
- Дифференциальные уравнения - основные понятия
- Дифференциальные уравнения первого порядка с разделяющимися переменными
- Однородные дифференциальные уравнения первого порядка
- Линейные дифференциальные уравнения первого порядка. Уравнение Бернулли
- Дифференциальные уравнения в полных дифференциалах
- Дифференциальные уравнения высших порядков
- Системы дифференциальных уравнений
- Решение контрольных работ по высшей математике
Уравнение
(*)
где и – непрерывные функция в интервале называется неоднородным линейным дифференциальным уравнение второго порядка, функции и – его коэффицинентами. Если в этом интервале, то уравнение принимает вид:
(**)
и называется однородным линейным дифференциальным уравнением второго порядка. Если уравнение (**) имеет те же коэффициенты и , как уравнение (*), то оно называется однородным уравнением, соответствующим неоднородному уравнению (*).
Однородные дифференциальные линейные уравнения второго порядка
Пусть в линейном уравнении
и - постоянные действительные числа.
Частное решение уравнения будем искать в виде функции , где – действительное или комплексное число, подлежащее определению. Дифференцируя по , получаем:
Подставляя в исходное дифуравнение, получаем:
Отсюда, учитывая, что , имеем:
Это уравнение называется характеристическим уравнением однородного линейного дифуравнения. Характеристическое уравнение и дает возможность найти . Это уравнение второй степени, поэтому имеет два корня. Обозначим их через и . Возможны три случая:
Корни действительные и разные
В этом случае общее решение уравнения:
Пример 1
Решение
Характеристическое уравнение имеет вид:
Решение характеристического уравнения:
Общее решение исходного дифуравнения:
Корни действительные и равные
В этом случае общее решение уравнения:
Пример 2
Решение
На сайте можно заказать решение задач, контрольных, самостоятельных, домашних работ (возможно срочное решение). Для этого вам нужно только связаться со мной:
Телеграм (+7 968 849-45-98)
ВКонтакте
WhatsApp (+7 968 849-45-98)
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Характеристическое уравнение имеет вид:
Решение характеристического уравнения:
Общее решение исходного дифуравнения:
Корни комплексные
В этом случае общее решение уравнения:
Пример 3
Решение
Характеристическое уравнение имеет вид:
Решение характеристического уравнения:
Общее решение исходного дифуравнения:
Неоднородные дифференциальные линейные уравнения второго порядка
Рассмотрим теперь решение некоторых типов линейного неоднородного уравнения второго порядка с постоянными коэффициентами
где и – постоянные действительные числа, – известная непрерывная функция в интервале . Для нахождения общего решения такого дифференциального уравнения необходимо знать общее решение соответствующего однородного дифференциального уравнения и частное решение . Рассмотрим некоторые случаи:
Правая часть дифференциального уравнения имеет вид:
Частное решение дифференциального уравнения ищем также в форме квадратного трехчлена:
Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.
Если нуль – однократный корень характеристического уравнения, то
Если нуль – двухкратный корень характеристического уравнения, то
Аналогично обстоит дело, если – многочлен произвольной степени
Пример 4
Решение
Решим соответствующее однородное уравнение.
Характеристическое уравнение:
Общее решение однородного уравнения:
Найдем частное решение неоднородного дифуравнения:
Подставляя найденные производные в исходное дифуравнение, получаем:
Искомое частное решение:
Общее решение исходного дифуравнения:
Правая часть дифференциального уравнения имеет вид:
Частное решение ищем в виде , где – неопределенный коэффициент.
Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициент.
Если – корень характеристического уравнения, то частное решение исходного дифференциального уравнения ищем в виде , когда – однократный корень, и , когда – двукратный корень.
Пример 5
Решение
Характеристическое уравнение:
Общее решение соответствующего однородного дифференциального уравнения:
Найдем частное решение соответствующего неоднородного дифференциального уравнения:
Подставляя в исходное дифуравнение, получаем:
Общее решение дифуравнения:
Правая часть дифференциального уравнения имеет вид:
В этом случае частное решение ищем в форме тригонометрического двучлена:
где и – неопределенные коэффициенты
Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.
Эти уравнения определяют коэффициенты и кроме случая, когда (или когда – корни характеристического уравнения). В последнем случае частное решение дифференциального уравнения ищем в виде:
Пример 6
Решение
Характеристическое уравнение:
Общее решение соответствующего однородного дифуравнения:
Найдем частное решение неоднородного дифуравнения
Подставляя в исходное дифуравнение, получаем:
Общее решение исходного дифуравнения: