Экономико-математические методы и модели - примеры решения задач
В этом разделе разобраны типовые задачи предмета "Экономико-математические методы и модели". Подробным образом рассматриваются задачи линейного программирования (графический и симплексный методы), транспортная задача и т.д.
Задачи для решения были взяты из реальных контрольных, самостоятельных и домашних работ разных ВУЗов. Перед решением некоторых задач кратко изложены основные теоретические сведения.
Решения задач содержат необходимые пояснения по ходу решения.
Заказать решение задач, узнать цену:
![]()
или подписаться на телеграм-канал, чтобы не потерять контакты:
Подробно рассмотрено понятие линейного программирования, даны описания форм записи задач линейного программирования, приведены примеры задач линейного программирования.
Рассмотрен графический метод решения задачи линейного программирования (ЗЛП) с двумя переменными. На примере задачи приведено подробное описание построения чертежа и нахождения решения.
На странице подробно разобрано решение задачи линейного программирования симплексным методом, кроме того, показано построение двойственной задачи линейного программирования и нахождение ее решения по решению прямой задачи.
Разобран метод искусственного базиса, применяемый для решения задач линейного программирования. Приведена краткая теория и, в качестве примеров, решены две задачи.
Содержит описание пары взаимно двойственных задач линейного программирования. Приведено правило построения двойственной задачи, сформулированы теоремы двойственности и на конкретных примерах рассмотрено их практическое применение при решении задач линейного программирования.
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.
На конкретных примерах разобраны методы нахождения опорного плана транспортной задачи - северо-западного угла, минимального элемента, Фогеля и двойного предпочтения.
На примере решения задач целочисленного программирования иллюстрируется метод ветвей и границ. Наряду с разобранными задачами, на странице приведены краткие теоретические сведения по данной теме.
На примере решения задачи целочисленного программирования иллюстрируется метод Гомори. Приведены краткие теоретические сведения по данной теме.
На странице даются основные понятия теории игр - платежной матрицы, стратегии игроков, седловой точки, нижней и верхней цены игры. Приведена краткая теория и решены несколько простых задач на тему основных понятий матричных игр.
Содержит изложенные в краткой и доступной форме теоретические сведения о матричной игре без седловой точки и способе сведения такой задачи к задаче линейного программирования, для отыскания ее решения в смешанных стратегиях. Приведен пример решения задачи.
Рассмотрено решение статистической матричной игры в условиях неопределенности с помощью критериев Вальда, Сэвиджа, Гурвица, Лапласа, Байеса. На примере задачи подробно показано построение платежной матрицы и матрицы рисков.
На странице рассмотрено нахождение условного экстремума методом множителей Лагранжа. Показано построение функции Лагранжа на примере решения задачи нелинейного программирования. Решенную задачу предваряет краткая теория.
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.
Кратко изложены основные принципы динамического программирования (динамического планирования), рассмотрены уравнения Беллмана. Подробно решена задача оптимального распределения ресурсов между предприятиями.
Приведены необходимые теоретические сведения, в частности формулы Эрланга, а также образец решения задачи по теме "Многоканальная система массового обслуживания с отказами". Подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с отказами - вероятность отказа и вероятность обслуживания, абсолютная пропускная способность системы и среднее число каналов, занятых обслуживанием заявки.
Приведены необходимые теоретические сведения и образец решения задачи по теме "Многоканальная система массового обслуживания с неограниченной очередью", подробно рассмотрены показатели многоканальной системы массового обслуживания (СМО) с ожиданием обслуживания - среднее число каналов, занятых обслуживанием заявки, длина очереди, вероятность образования очереди, вероятность свободного состояния системы, среднее время ожидания в очереди.
На примере решения задачи рассмотрена основная модель управления запасами (модель Уилсона). Вычислены такие показатели модели как оптимальный размер партии заказа, годовые затраты на хранение, интервал между поставками и точка размещения заказа.
На примере решения задачи рассмотрена межотраслевая модель Леонтьева. Показано вычисление матрицы коэффициентов прямых материальных затрат, матрицы «затраты-выпуск», матрицы коэффициентов косвенных затрат, векторов конечного потребления и валового выпуска.


