Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач, домашних работ и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или электроннной почтой, сообщив необходимые вам сроки решения и скинув условие.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Дифференциальные уравнения первого порядка с разделяющимися переменными

Краткая теория

Дифференциальное уравнение 1-го порядка с неизвестной функцией , разрешенное относительно производной  имеет вид:

где  – данная функция. В некоторых случаях выгодно за искомую функцию считать переменную  и записывать уравнение в виде:

где

Учитывая, что  и , то дифференциальные уравнения можно записать в симметрической форме:

где  и  – известные функции

Под решениями дифференциального уравнения понимаются функция вида  или , удовлетворяющие этому уравнению.

Общий интеграл уравнений имеет вид , где  – произвольная постоянная.

 

Уравнением с разделяющимися переменными называется уравнение 1-го порядка вида

или

Разделив обе части уравнения (*) на  и умножив на , будем иметь

Отсюда, интегрируя, получим общий интеграл уравнения (*) в виде:

Аналогично, разделив обе части уравнения (**) на  и проинтегрировав, получим общий интеграл уравнения (**) в виде

Если для некоторого значения  мы имеем , то функция  является также, как непосредственно легко убедиться, решением уравнения (*). Аналогично прямые  и  будут  интегральными кривыми уравнения (**), если  и  являются соответственно корнями уравнения  и , на левые части которых приходилось делить исходное уравнение.

Методы решения других видов дифференциальных уравнений:

Примеры решения задач

Задача 1

Найти общий интеграл дифференциального уравнения.

Решение

Это дифуравнение с разделяющимися переменными.

Используем интегрирование путем подведения под знак дифференциала:

Общее решение дифуравнения:

Ответ: 

Задача 2

Решение

Преобразуем дифуравнение:

Задали объемную домашнюю работу или контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, домашних работ, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Это дифуравнение с разделяющимися переменными

Общее решение дифуравнения:

Ответ:

К оглавлению решебника по высшей математике