Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Viber или электроннной почтой.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Закон больших чисел. Неравенство Чебышева

Краткая теория

Нельзя заранее уверенно предвидеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих случайных причин, учесть которые невозможно. При некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в теоремах, носящих общее название закона больших чисел. К закону больших чисел прежде всего относится так называемое неравенство Чебышева, которое оценивает в отдельном испытании вероятность принятия случайной величиной значения, уклоняющееся от среднего значения не более, чем на заданное значение.

Пример решения задачи

Условие задачи

Дисперсия случайной величины  равна

Требуется:

  • С помощью неравенства Чебышева оценить вероятность того, что случайная величина отклонится от своего математического ожидания не более, чем на величину . Параметры выбрать по номеру варианта;
  • Для рассматриваемой случайной величины  оценивается математическое ожидание. Сколько нужно сделать измерений, чтобы с вероятностью, не меньшей 0,95, среднее арифметическое этих измерений отклонилось от истинного значения математического ожидания не более чем на величину .

Задали объемную контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Решение задачи

Вероятность того, что случайная величина отклонится от своего математического ожидания не более, чем на величину :

 

Количество измерений можно найти по формуле:

где  - аргумент функции Лапласа

Задача на вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях

Ответ

Таким образом, достаточно одного измерения, чтобы с вероятностью, не меньшей 0,95, среднее арифметическое этих измерений отклонилось от истинного значения математического ожидания не более чем на величину .

К оглавлению решебника по теории вероятностей и математической статистике