Расчет общих и средних индексов
Краткая теория
Индексный метод - один из самых распространенных методов статистического анализа экономических явлений. С помощью индексов изучаются народное хозяйство в целом и его отдельные отрасли, а также деятельность предприятий, объединений, фирм, хозяйств и др.; выявляется динамика развития социально-экономических явлений, анализируется выполнение планов или норм; определяется влияние отдельных факторов на общий результат, вскрываются резервы производства; проводятся территориальные и международные сопоставления экономических показателей.
Индексом в статистике называется относительный показатель, характеризующий соотношение во времени, по сравнению с планом или в пространстве уровней социально-экономических явлений. Так как индекс - относительный показатель, то он всегда получается при соотношении двух величии: отчетной (или текущей), т. е. сравниваемой, и базисной, т. е. той, с уровнем которой сравнивается отчетная величина. Если за базу сравнения берется уровень явления за какой-то прошлый период времени, получают динамические индексы; если за базу сравнения берется уровень явления на другой территории, получают территориальные индексы, а если за базу сравнения берется какой-либо нормативный уровень, получают индексы выполнения плана, индексы выполнения норм и т. д.
В формулах, системах уравнений, экономико-математических моделях текущие данные помечаются единицей, стоящей чуть ниже буквенного обозначения величины.
Как и всякая относительная величина, индексы выражаются в виде коэффициентов, если за основание принимается единица, или в виде процентов, если за основание принимается сто.
Социально-экономические явления, изучаемые статистикой, обычно состоят из многих элементов. Так, валовой выпуск продуктов и услуг включает стоимость конечных товаров и услуг, созданных всеми общественно организованными видами экономической деятельности и во всех отраслях экономики. Другими словами, валовой выпуск продуктов и услуг состоит из многих отдельных видов продуктов и услуг.
Индексы
рассчитываются как для отдельных элементов сложного явления, так и для всего
сложного явления в целом. В первом случае они называются индивидуальными и
обозначаются латинской буквой
, а во второй -
общими и обозначаются
. К индивидуальным
индексам относятся индексы, характеризующие изменение выпуска одного
какого-либо вида продукции (индексы выплавки стали, добычи калийных удобрений,
производства телевизоров и др.), индексы, характеризующие изменение цены
какого-либо товара (велосипедов, цемента, говядины и др.), себестоимости
отдельного изделия и т.д.
К индексам, исчисленным для всего сложного явления, то есть к общим, относятся индексы, характеризующие динамику выпуска всей продукции предприятия, отрасли и др., динамику цен группы товаров, или всех товаров, или набора продовольственных и непродовольственных товаров и услуг, входящих в «потребительскую корзинку», динамику себестоимости ряда изделий и т. д.
Общие индексы используются для сопоставления непосредственно несоизмеримых, разнородных явлений. Например, с помощью общих индексов можно охарактеризовать динамику выпуска продукции всей промышленности или динамику объемов всей выпускаемой продукции на мебельной фабрике, изготавливающей различные виды продукции: столы, кресла, диваны, шкафы. Однако нельзя просто сложить объемы продукции различных видов за два периода и отнести эти суммы одну к другой. Такое суммирование бессмысленно не только из-за различных единиц измерения (тонны, штуки, метры и др.), но также из-за того, что каждый вид продукции имеет свое назначение и произведен с разными затратами средств и общественно необходимого времени.
Чтобы сделать сопоставимыми несоизмеримые явления (или их элементы), нужно выразить их общей мерой; стоимостью, трудовыми затратами и т. д. Эта задача решается построением и расчетом общих индексов. Основной формой общих индексов являются агрегатные индексы.
Агрегатный индекс состоит из двух элементов: индексируемых величин, изменение которых должен отразить индекс, и показателей, которые служат соизмерителями (весами).
Произведение каждой индексируемой величины на соизмеритель (вес) должно давать определенную экономическую категорию.
Значение индексируемой величины всегда изменяется: отчетное значение сопоставляется с базисным. Конкретное название индекса дается всегда по индексируемой величине. Например, если индексируется цена, то получают индекс цен, если индексируется физический объем, получают индекс физического объема и т. д.
Показатель-соизмеритель (вес) выполняет функцию веса по отношению к индексируемой величине. Значение соизмерителя (веса) в конкретном индексе принимается одинаковым в числителе и знаменателе, чтобы исключить влияние соизмерителя на изменение индексируемого показателя. Веса индексов могут быть выражены в стоимостных, трудовых и других единицах измерения, а также в виде относительных величин структуры. При построении агрегатных индексов важно правильно выбрать веса индексов. Они должны выбираться с учетом сущности исследуемого социально-экономического явления, чтобы сохранить экономический смысл индекса и получить возможность на его основе исчислять абсолютные суммы экономического эффекта.
В зависимости от содержания и характера индексируемой величины различают индексы количественных (объемных) показателей и индексы качественных показателей. Количественные (экстенсивные) показатели характеризуют общий, суммарный размер того или иного явления, например, количество (физический объем) продукции в натуральном выражении, численность работников, общие затраты времени на произведенную продукцию, размер посевной площади и т. д. Качественные (интенсивные) показатели характеризуют размер признака в расчете на единицу совокупности: цена единицы продукции (товара), себестоимость единицы продукции, затраты рабочего времени па единицу продукции (трудоемкость единицы продукции), выработка продукции на одного работающего, расход материала (топлива) на единицу продукции, урожайность культуры в расчете на один гектар и т. п. Как правило, качественные показатели представляют собой либо средние значения, либо относительные величины.
Существует правило построения агрегатных факторных индексов, в соответствии с которым в индексах качественных показателей весами выступают показатели отчетного периода, а в индексах количественных показателей — базисного периода.
Соответствующие
количественные (объемные) и качественные показатели тесно связаны друг с другом.
В общем виде эта взаимосвязь выражается в том, что произведение качественного
показателя на связанный с ним количественный показатель дает новый показатель,
другую экономическую категорию. Например, если перемножить цену одного изделия
(
, качественный
показатель) на количество этих изделий (
, количественный
показатель), то получим общую стоимость данных изделий или товарооборот (
, новый
показатель); произведение удельного расхода материала
на количество единиц продукции
представляет собой
общий расход материала (
, новый
показатель); произведение урожайности культуры на ее посевную площадь дает
валовой сбор этой культуры (новый показатель) и т. д. Эта взаимосвязь между
количественными и качественными показателями справедлива при построении и
исчислении их агрегатных индексов.
Например,
произведение агрегатного индекса цен
на агрегатный индекс физического объема
равно агрегатному индексу стоимости продукции
(товарооборота)
.
Агрегатный
индекс цен
определяется по формуле:
Агрегатный индекс цен характеризует, как изменились в среднем цены на различные виды продукции, включенные в расчет общего индекса цен.
Агрегатный
индекс физического объема
характеризует, как изменился в среднем общий
объем продукции по анализируемому перечню. Он определяется по формуле:
Индекс стоимости продукции (товарооборота) определяется по формуле:
Индекс стоимости продукции характеризует изменение фактической стоимости произведенной или реализованной продукции или же размера товарооборота по анализируемой совокупности.
Взаимосвязь индексов может быть представлена выражением:
Используя эти формулы, можно по двум известным индексам определить третий.
Агрегатный индекс является основной, но не единственной формой общего индекса. Общий индекс может быть исчислен и как средняя величина индивидуальных индексов. Эта средняя может быть рассчитана как средняя арифметическая и как средпяя гармоническая. Как одна, так и другая средняя выводятся из агрегатных индексов и дают результаты, тождественные этим индексам. Выбор формы индекса зависит от характера исходных данных. Если известны значения индексируемого показателя и веса в отчетном (текущем) и базисном периодах, то пользуются агрегатной формой индексов. Если отсутствуют значения индексируемого показателя или веса в отчетном или базисном периодах, по известны изменения индексируемого показателя или веса по отдельным единицам изучаемой совокупности, то пользуются формой средних индексов.
При сравнении уровней средних величин отчетного и базисного периодов получают индекс, который в статистике называют индексом переменного состава. Так, например, индекс себестоимости переменного состава исчисляется по формуле:
На индекс переменного состава (динамику средних величин) оказывают влияние два фактора: во-первых, изменение уровней осредняемого признака (в нашем примере изменение уровней себестоимости продукции по каждому из предприятий) и, во-вторых, изменение долей единиц совокупности с различными значениями признака (структурные сдвиги).
Индекс переменного состава вычисляют и по такой формуле:
где
Индекс себестоимости постоянного фиксированного состава рассчитывают по формуле:
или
Индекс структурных сдвигов исчисляют по формуле:
или
Взаимосвязь индексов:
Вычитая из числителя каждого из индексов приведенной системы знаменатель, получим разложение абсолютного изменения (прироста) среднего уровня признака за счет непосредственного изменения уровней осредняемого признака (индивидуальных уровней себестоимости), так и за счет изменения удельных весов (структурных сдвигов):
Смежные темы решебника: