Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Viber или электроннной почтой.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Несобственные интегралы

Краткая теория

Понятие несобственного интеграла является обобщением понятия определенного интеграла на случай, когда либо промежуток интегрирования бесконечен (интеграл имеет бесконечные пределы интегрирования), либо подынтегральная функция в некоторых точках обращается в бесконечность.

Рассмотрим несобственные интегралы первого рода.

Если функция  определена на промежутке  и при любом  существует определенный интеграл

то можно рассматривать

этот предел и называют несобственным интегралом от функции  на промежутке . Его обозначают

примем, если предел конечен, то говорят, что несобственный интеграл сходится, а функция  интегрируема на промежутке ; если же предел бесконечен или вовсе не существует, то говорят, что несобственный интеграл расходится, а функция  не интегрируема на .

Таким образом, по определению, если существует

то

Подобным образом определяются несобственные интегралы и для других бесконечных промежутков:

Так как несобственные интегралы с бесконечными пределами получаются предельным переходом из соответствующих определенных (собственных) интегралов, то на первые переносятся все те свойства последних, которые сохраняются при этом предельном переходе.

Перейдем теперь к рассмотрению несобственного интеграла от неограниченной функции (несобственного интеграла второго рода). Пусть функция  определена на отрезке , за исключением точки , в окрестности которой она не ограничена. Если существует определенный интеграл

при любом , то можно рассматривать

Этот предел называется несобственным интегралом второго рода на  от неограниченной на нем функции  и обозначается

При этом, если предел существует и конечен, то несобственный интеграл называется сходящимся, а неограниченная функция  – интегрируемой на . Если же предел бесконечен или вовсе не существует, то несобственный интеграл называется расходящимся, а функция  – не интегрируемой на .

Аналогично определяется несобственный интеграл для случая, когда функция  определена на отрезке , за исключением точки , в окрестности которой она не ограничена.

В случае, если точка разрыва функции  – точка  – лежит между точками  и  и несобственные интегралы на отрезках  и  существуют, то считают, то

Пример решения задачи

Задача 1

Вычислить несобственный интеграл или доказать его расходимость.

В этом примере для вычисления неопределенного интеграла используется интегрирование путем подведения под знак дифференциала.

Несобственный интеграл сходится.

Ответ:

Задача 2

Вычислить несобственный интеграл или доказать его расходимость.

В этом примере для вычисления неопределенного интеграла применяется метод интегрирования по частям.

Несобственный интеграл сходится.

Ответ:

Задали объемную контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Задача 3

Вычислить несобственные интегралы или доказать их расходимость.

В этом примере для вычисления неопределенного интеграла используется интегрирование путем подведения под знак дифференциала.

Несобственный интеграл сходится.

 

Ответ:

Задача 4

Вычислить несобственные интегралы или доказать их расходимость.

В этом примере для вычисления неопределенного интеграла используется интегрирование путем подведения под знак дифференциала.

 

Несобственный интеграл расходится.

Ответ:

Расходится

К оглавлению решебника по высшей математике