Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Viber или электроннной почтой.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Вычисление пределов функции. Первый и второй замечательные пределы

Краткая теория

Число  называется пределом функции  в точке , если для всех значений , достаточно близких к  и отличных от  значения функции  сколь угодно мало отличаются от числа .

Пишут:

Правила вычисления пределов

Пусть существуют пределы

Тогда:

1. Предел константы равен самой константе:

2. Предел суммы двух функций равен сумме пределов этих функций:

3. Предел произведения двух функций равен произведению пределов этих функций:

4. Постоянный множитель выносится за знак предела:

5. Предел частного двух функций равен частному пределов этих функций:

6. Показатель степени можно выносить за знак предела:

Универсальный метод, устраняющий неопределенности и носит название правила Лопиталя и рассматривается на соседней странице.

 

Пример 1

Если  и  – целые многочлены и  или 0, то предел рациональной дроби:

находится непосредственно.

Пример 2

Если же , то дробь  рекомендуется сократить один или несколько раз на бином

Задали объемную контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Пример 3

При отыскании предела отношения двух целых многочленов относительно  при  оба члена отношения полезно предварительно разделить на , где  – наивысшая степень этих многочленов.

Аналогичный прием во многих случаях можно применять и для дробей,  содержащих иррациональности.

1)

2)

Пример 4

Выражения, содержащие иррациональности, приводятся к рациональному виду во многих случаях путем введения новой переменной.

Полагая

получаем:

 

Пример 5

Другим приемом вычисления предела от иррационального выражения является перевод иррациональности из числителя в знаменатель или, наоборот, из знаменателя в числитель.

Пример 6

Первый замечательный предел

При вычислении пределов во многих случаях используется формула первого замечательного предела:

Пример 7

Второй замечательный предел

Второй замечательный предел:

 

При вычислении пределов вида

следует иметь ввиду, что:

1) если существуют конечные пределы

то

2) если

то вопрос о решении предела

решается непосредственно

3) если

то полагают , где  при , и следовательно

где  - неперово число

Пример 8

Предел логарифма

При вычислении некоторых пределов полезно знать, что если существует и положителен

то

-----

К оглавлению решебника по высшей математике