Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач, домашних работ и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или электроннной почтой, сообщив необходимые вам сроки решения и скинув условие.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Относительная частота. Статистическая вероятность

Краткая теория

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей. Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний.

Таким образом, относительная частота события  определяется формулой:

где  – число появления события

 – общее число испытаний

Сопоставляя определения вероятности и относительной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически. Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена относительная частота, то полученное число можно принять за приближенное значение вероятности.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно. В таких случаях классическое определение неприменимо.

По этой причине наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение: в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней. Например, если в результате достаточно большого числа испытаний оказалось, что относительная частота весьма близка числу 0,4, то это число можно принять за статистическую вероятность события.

Для существования статистической вероятности события  требуется:

а) возможность, хотя бы принципиально, производить неограниченное число испытаний, в каждом из которых событие А наступает или не наступает;

б) устойчивость относительных частот появления  в различных сериях достаточно большого числа испытаний.

Примеры решения задач

Пример 1

Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова относительная частота появления шестерки?

Решение:

Из условия задачи следует, что , , поэтому

Ответ: 

Пример 2

При стрельбе по мишени относительная частота попаданий . Найти число попаданий при 40 выстрелах.

Решение:

Задали объемную домашнюю работу или контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, домашних работ, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Из формулы

следует, что .

Так как , , то искомое число попаданий:

Ответ:

Пример 3

 Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Найти относительная частоту изделий первого сорта, относительную частоту изделий второго сорта.

Решение:

Прежде всего, найдем число изделий первого сорта:

Относительная частота изделий 1-го сорта:

Аналогично находим относительную частоту изделий второго сорта:

Ответ:

К оглавлению решебника по теории вероятностей и математической статистике