Многоканальная СМО с неограниченной очередью

Краткая теория

Пусть в n-канальную систему массового обслуживания (СМО) поступает с интенсивностью  простейший поток требований. Длительность обслуживания распределена по показательному закону со средним временем обслуживания .  Если же все каналы обслуживания заняты, то вновь поступившее требование становится в очередь за ранее поступившими не обслуженными требованиями. Освободившийся канал приступает к обслуживанию очередного требования из очереди. Определим основные характеристики работы такой системы. Так как число требований, стоящих в очереди, может быть бесконечно большим, то и число состояний системы также может быть бесконечно большим.

Вероятность свободного состояния системы:

Последнее выражение получено при условии , которое является условием стационарности СМО. В случае  система не справляется с обслуживанием, очередь неограниченно возрастает. Отношение  обозначается через  и называется уровнем загрузки системы:

Определим основные характеристики многоканальной СМО с ожиданием. Вероятность получения отказа равна нулю. Относительная пропускная способность —это величина, которая дополняет вероятность отказа до единицы: .  Абсолютная пропускная способность . Определим среднее число занятых каналов: каждый занятый канал обслуживает в единицу времени в среднем  заявок, а вся система —  заявок. Тогда:

Коэффициент занятости каналов обслуживания:

Образование очереди возможно, когда вновь пост пившее требование застанет в системе не менее n требований, т. е. когда в системе будет находиться , , требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме вероятностей ,   Отсюда вероятность образования очереди:

Среднее число заявок в очереди  можно вычислить как математическое ожидание, складывая произведения  возможного числа заявок на вероятность того, что число заявок будет в очереди:

Среднее число заявок, связанных с системой:

Определим среднее время ожидания заявки в очереди . Очередь образуется, если все  каналов заняты. Так как интенсивность обслуживания , то поток освобожденных каналов имеет интенсивность . Если заявка поступила в момент, когда заняты все  каналов и очереди нет, то время ожидания составит в среднем , а если застанет одно требование в очереди, то , и так далее. Среднее время ожидания заявок в очереди найдем, суммируя произведения среднего времени ожидания на соответствующую вероятность:

Среднее время пребывания заявок в системе:   

Формулы Литтла:  

Среднее число простаивающих каналов обслуживания:

Коэффициент простоя каналов:

Пример решения задачи

Задача

На строительном складе работают четыре кладовщика. Поток посетителей имеет пуассоновское распределение с интенсивностью 2 заявки в минуту. Время обслуживания имеет показательное распределение со средним значением 1,5 минуты на заявку. Определить показатели работы склада.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

Имеем:

Отсюда следует, что вероятность того, что все четыре кладовщика простаивают, равна 0,05. Определим другие показатели работы системы.

Абсолютная пропускная способность склада, т. е. количество обслуживаемых в единицу времени требовании,  (заявки в минуту). Среднее число занятых кладовщиков . Вероятность образования очереди, т. е. вероятность того, что в момент обращения заказчика все четыре кладовщика заняты:

Среднее число заявок в очереди:

Среднее время простаивания в очереди:

Среднее число заявок в системе:

Среднее время пребывания заявки в системе:

Среднее число простаивающих кладовщиков: