Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач, домашних работ и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или электроннной почтой, сообщив необходимые вам сроки решения и скинув условие.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Непрерывность и точки разрыва функции

Краткая теория

Функция  называется непрерывной в точке , если она определена в некоторой окрестности этой точки и

или

Если для функции  существует предел

а функция  непрерывна в точке , то существует

(то есть знак предела и знак непрерывной функции можно менять местами).

Если функция  непрерывна в каждой точке некоторого множества, то она называется непрерывной на этом множестве (в граничных точках множества имеется в виду непрерывность слева или справа).

Сумма и произведение конечного числа непрерывных функций есть непрерывная функция.

Частное от деления двух непрерывных функций есть функция, непрерывная во всех точках, в которых знаменатель не равен нулю.

Всякая элементарная функция непрерывна на своем множестве задания.

Пусть функция  определена в некоторой окрестности точки , кроме, может быть, самой точки . Точку  называют точкой разрыва функции  в следующих случаях:

  • функция  не определена в этой точке;
  • функция  определена в точке , но не существует предел
    или, если он существует, то (то есть )

Точки разрыва подразделяются на точки разрыва первого и второго рода.

Если в точке разрыва  существуют оба односторонних предела  и , то  называется точкой разрыва первого рода функции , а разность  – скачком функции  в точке .

Точку  разрыва первого рода, в которой , называют точкой устранимого разрыва.

Если хотя бы один из пределов  или  не существует (в частности, равен  или ), то  называется точкой разрыва второго рода.

Если  – точка разрыва функции , то эту функцию называют разрывной в точке .

Пример решения задачи

Задача 1

Заданы функция  и два значения аргумента  и . Требуется: 1) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее пределы в точке разрыва слева и справа; 3) сделать схематический чертеж.

Решение

Задали объемную домашнюю работу или контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, домашних работ, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

При  -в этой точке функция не определена.

Вычисляем пределы:

В точке  функция терпит разрыв 2-го рода 

 

При 

Вычисляем пределы:

В точке   функция непрерывна

Полное исследование функции и построение графика

Задача 2

Исследовать на непрерывность данные функции. Сделать чертеж.

Решение

Функция задана на трех промежутках различными аналитическими выражениями. Каждое из этих выражений представляет собой элементарную функцию, которая является непрерывной на заданном промежутке.  Поэтому функция может иметь разрывы лишь в точках, где меняется ее аналитическое выражение.

Исследуем на непрерывность в каждой из этих точек.

В точке :

Вычисляем пределы:

В точке правый предел функции не равен левому. В точке  функция терпит разрыв 1-го рода.  

 

В точке :

Вычисляем пределы:

Односторонние пределы в точке  равны между собой и равны значению функции в этой точке. В точке  функция непрерывна.

 

Сделаем чертеж.

К оглавлению решебника по высшей математике