Объемы тел вращения
Краткая теория
Объемы тел, образованных вращением
криволинейной трапеции, ограниченной кривой
, осью
и двумя
вертикалями
и
, вокруг осей
и
, выражаются соответственно формулами:
Объем тела, образованного вращением
около оси
фигуры,
ограниченной кривой
, осью
и двумя
параллелями
и
, можно определять по формуле:
Если кривая задана в иной форме (параметрически, в полярных координатах и т.д.), то в приведенных формулах нужно сделать соответствующую замену переменной интегрирования.
В более общем случае объемы тел,
образованных вращением фигуры, ограниченной кривыми
и
(причем
) и прямыми
,
, вокруг координатных осей
и
, соответственно равны:
Объем тела, полученного при вращении
сектора, ограниченного дугой кривой
и двумя
полярными радиусами
,
, вокруг полярной оси, может быть вычислен по формуле:
Этой же формулой удобно пользоваться при отыскании объема тела, полученного вращением вокруг полярной оси фигуры, ограниченной некоторой замкнутой кривой, заданной в полярных координатах.
Если
– площадь
сечения тела плоскостью, перпендикулярной к некоторой прямой (которую принимаем
за ось
), в точке с абсциссой
, то объем этого тела равен:
где
и
– абсциссы
крайних сечений тела.
Примеры решения задач
Задача 1
С помощью
определенного интеграла вычислить объем тела, полученного вращением фигуры
вокруг указанной оси координат.
вокруг
оси
Решение
Сделаем чертеж:
Объем
тела, образованного вращением вокруг оси
фигуры можно найти по формуле:
В нашем случае получаем
Ответ:
Задача 2
Найдите
объем тела, полученного вращением вокруг оси абсцисс криволинейной трапеции,
ограниченной линиями:
и
.
Решение
Если по каким-либо причинам не справляетесь с решением задач, на портале можно заказать выполнение расчетной домашней работы, ИДЗ, РГР, контрольной и даже отдельных задач в разумные сроки. Чтобы вы смогли сделать заказ, я доступен по следующим каналам связи:
Контакты будут для вас
видны на территории
России и Беларуси
Общение без посредников. Удобная оплата переводом на банковскую карту. Опыт работы более 25 лет.
Подробное решение в формате электронного документа получите точно в срок или раньше.
Сделаем чертеж:
Объем тела можно найти по формуле:
Ответ:
Задача 3
Определить объем, образованный вращением кривой
вокруг полярной оси.
Решение
Ответ:
Задача 4
Вычислить объем тела, ограниченного однополосным гиперболоидом
и
плоскостями
.
Решение
Здесь
удобнее рассмотреть сечения данного тела плоскостями, перпендикулярными к оси
. Тогда объем выразится
формулой:
где
– площадь получаемого сечения, зависящая от
точки с аппликатой
, через которую проходит
секущая плоскость. При пересечении однополосного гиперболоида плоскостью
получается эллипс, который можно определить
уравнениями:
откуда следует, что полуоси эллипса:
Учитывая, что площадь эллипса с
полуосями
и
равна
, воспользовавшись параметрическим заданием эллипса:
мы можем записать аналитическое
выражение функции
:
Тогда искомый объем:
Ответ: