Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение WhatsApp, ВКонтакте или Viber. Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников.
Опыт работы более 20 лет.
Оплата на карту Сбербанка (другие распространенные способы оплаты по договоренности).
Стоимость решения домашней работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ). Подробное оформление с выводами. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 1000 р. за решение билета.

Показательное распределение

Краткая теория

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины , которое описывается плотностью:

где  – постоянная положительная величина.

Показательное распределение определяется одним параметром . Эта особенность распределения указывает на его преимущество по сравнению с распределениями, зависящими от большего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значения); разумеется,  проще оценить один параметр, чем два или три. Примером непрерывной случайной величины, распределенной по показательному закону, может служить время между появлениями двух последовательных событий простейшего потока.

Функция распределения показательного закона:

Графики плотности и функции распределения показательного закона изображены на рисунке.

Вероятность попадания в интервал  непрерывной случайной величины , распределенной по показательному закону:

Математическое ожидание случайной величины, распределенной по показательному закону:

Дисперсия случайной величины, распределенной по показательному закону:

Среднее квадратическое отклонение случайной величины, распределенной по показательному закону:

Таким образом, математическое ожидание и среднее квадратическое отклонение экспоненциального распределения равны между собой.

Показательный закон распределения играет большую роль в теории массового обслуживания и теории надежности. Так, например, интервал времени  между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром  – интенсивностью потока.

Пример решения задачи

Случайная величина  задана функцией распределения

Найдите математическое ожидание и среднее квадратическое отклонение этого распределения.

Найдите вероятность того, что случайная величина примет значение от 0,2 до 1.

Оказались на этой странице, пытаясь решить задачу на экзамене или зачете? Если так и не смогли сдать экзамен - в следующий раз договоритесь заранее на сайте о помощи онлайн по теории вероятностей.

Решение:

Математическое ожидание случайной величины, распределенной по показательному закону:

Среднее квадратическое отлонение:

Вероятность того, что случайная величина примет значение от 0,2 до 1

 

Ответ: .

Сохранить ссылку на страницу в социальной сети: