Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение WhatsApp, ВКонтакте или Viber. Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников.
Опыт работы более 20 лет.
Оплата на карту Сбербанка (другие распространенные способы оплаты по договоренности).
Стоимость решения домашней работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ). Подробное оформление с выводами. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 1000 р. за решение билета.

Структурные средние - мода, медиана, квантиль, дециль

Краткая теория

Наиболее широкое применение в статистике имеют структурные средние, к числу которых относятся мода и медиана (непараметрические средние).

Мода  - величина признака (варианта), которая встречается в ряду распределения с наибольшей частотой (весом). К моде (Мо) прибегают для выявления величины признака, имеющей наибольшее распространение (цена на рынке, по которой было совершено наибольшее число продаж данного товара, номер обуви, который пользуется наибольшим спросом у покупателей и т. д.). Мода используется только в совокупностях большой численности. В дискретном ряду мода находится как варианта, имеющая наибольшую частоту. В интервальном ряду сначала находится модальный интервал, то есть  интервал, обладающий наибольшей частотой, а затем – приближенное значение модальной величины признака по формуле:

 – нижняя граница модального интервала

  - величина модального интервала

 – частота интервала, предшествующего модальному

 – частота модального интервала

   – частота интервала, следующего за модальным

Квантили - величины, разделяющие совокупность на определенной количество равных по численности элементов частей. Самый известный квантиль – медиана,  делящая совокупность на две равные части.  Кроме медианы часто используются квартили,  делящие ранжированный ряд на 4 равные части,  децили -10 частей и перцентили - на 100 частей.

Медиана - величина признака у единицы, находящейся в середине ранжированного (упорядоченного) ряда. Если ряд распределения представлен конкретными значениями признака, то медиана (Me) находится как серединное значение признака.

Если ряд распределения дискретный, то медиана находится как серединное значение признака (например, если число значений нечетное – 45, то  соответствует 23 значению признака в ряду значений, расположенных в порядке возрастания, если число значений четное – 44, то медиана соответствует полусумме 22 и 23 значений признака).

Если ряд распределения интервальный, то первоначально находят медианный интервал, который содержит единицу, находящуюся в середине ранжированного ряда. Для определения этого интервала сумму частот  делят пополам и на основании  последовательного накопления (суммирования) частот интервалов, начиная с первого, находят интервал, где расположена медиана. Значение медианы в интервальном ряду вычисляют по формуле:

  - нижняя граница медианного интервала

   - величина медианного интервала

  - сумма частот ряда

 – сумма накопленных частот в интервалах, предшествующих медианному

 – частота медианного интервала

Квартили - это значения признака в ранжированном ряду, выбранные таким образом, что 25% единиц совокупности будут меньше величины ,  25% единиц будут заключены между   и  ; 25%  - между     и , остальные 25% превосходят .  Квартили определяются по формулам, аналогичным формуле для расчета медианы. Для интервального ряда:

Децилем называется структурная переменная, делящая распределение на 10 равных частей по числу единиц в совокупности. Децилей 9, а децильных групп 10. Децили определяются по формулам, аналогичным формуле для расчета медианы и квартилей.

 

В целом общая формула для расчета квантилей в интервальном ряду такова:

 – порядковый номер квантиля

 – размерность квантиля (на сколько частей эти квартили делят совокупность)

 – нижняя граница квантильного интервала

 – ширина квантильного интервала

 - накопленная частота предквантильного интервала

Для дискретного ряда номер квантиля можно найти по формуле:

Пример решения задачи

Условие задачи 1 (дискретный ранжированный ряд)

В результате исследований установлен среднемесячный доход жильцов одного подъезда:

1.5

1.8

2

2.5

2.8

2.8

2.8

3.0

3.6

3.8

3.9

4

5.8

5.9

6

6

6

6.8

7

7

Определите:

Модальный и медианный доход, квантили и децили дохода.

Решение задачи

Имеем уже ранжированный ряд - значения дохода жильцов распределены по возрастанию.

Мода - наиболее часто встречающееся значение. В данном случае имеем ряд с двумя модами.

 и

 

Медиана - такое значение признака, которое делит упорядоченное множество данных пополам.

Квартили - значения признака в ранжированном ряду, выбранные таким образом, что 25% единиц совокупности будут меньше величины ; 25% единиц будут заключены между  и ;  25% - между  и ; остальные 25% превосходят .

Дицили делят ряд на 10 равных частей:

Испытываете сложности с пониманием хода решения? На сайте действует услуга Решение задач по статистике на заказ

Условие задачи 2 (интервальный ряд)

Для определения среднего размера вклада в кредитном учреждении были получены следующие данные:

Размер вклада, тыс.р. до 10.0 10.0-16.0 16.0-22.0 22.0-28.0 28.0-34.0 Свыше 34.0
Удельный вес вкладов, % 5.0 8.0 15.0 22.0 30.0 20.0

Рассчитайте  структурные средние (моду, медиану, квартили).

Решение задачи

Вычислим моду размера вклада:

Мода - варианта, которой соответствует наибольшая частота.

Мода вычисляется по формуле:

   - начало модального интервала

    - величина интервала

   - частота модального интервала

   - частота интервала, предшествующего модальному

   - частота интервала, следующего за модальным

 

Таким образом,  наибольшее количество вкладов имеют размер 30,7 тыс.р.

 

Медиана - варианта, находящаяся в середине ряда распределения.

Расчет медианы производится по формуле:

   -начало (нижняя граница) медианного интервала

    -величина интервала

  -сумма всех частот ряда

   -частота медианного интервала

-сумма накопленных частот вариантов до медианного

Таким образом, половина вкладов имеет размер до 28 тыс.р., другая половина - более 28 тыс.р.

 

Вычислим квантили:

 

Таким образом 25% вкладов меньше 20,8 тыс.р., 25% вкладов лежат в интервале от 20,8 тыс.р. до 28 тыс.р., 25% лежат в интервале от 28 тыс.р. до 33 тыс.р., 25% больше величины в 33 тыс.р.

Сохранить ссылку на страницу в социальной сети: