Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или Viber.
Возможно срочное решение - от суток до нескольких часов, онлайн-помощь на экзамене.
Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Стоимость решения контрольной работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ).

Разложение функций в степенной ряд Тейлора (Маклорена)

Краткая теория

Если функция  допускает в некоторой окрестности  точки  разложение в степенной ряд по степеням , то этот ряд (ряд Тейлора) имеет вид

При  ряд Тейлора называют также рядом Маклорена. Последнее равенство справедливо, если при  остаточный член ряда Тейлора

при

Для оценки остаточного члена можно пользоваться формулой (форма Лагранжа)

Пример решения задачи

Разложить функцию  в ряд по степеням .

Если сроки со сдачей контрольной работы поджимают, то тогда за деньги на сайте можно выполнить вашу контрольную работу по высшей математике.

Находим производные данной функции:

….

Вообще , если  – четное, и , если  – нечетное

Полагая  получаем:

….

Вообще , если  – четное, и , если  – нечетное

На основании формулы разложения в ряд Тейлора имеем:

Для определения интервала сходимости ряда применим признак Даламбера.

при любом . Следовательно, ряд сходится в интервале . Остаточный член имеет вид:

Так как , то

Поэтому:

Ряд с общим членом  сходится при любом  (в этом можно убедиться с помощью признака Даламбера), поэтому в соответствии с необходимым признаком сходимости:

а следовательно, при любом .

Это значит, что сумма ряда для любого  действительно равна .

Разложение основных функций в степенной ряд Маклорена

Пользуясь основными разложениями, а также формулой для геометрической прогрессии, можно во многих случаях просто получать разложение данной функции в степенной ряд, причем отпадает необходимость исследования остаточного члена. Иногда при разложении полезно использовать почленное дифференцирование или интегрирование. При разложении в степенные ряды рациональных функций рекомендуется разлагать эти функции на простейшие дроби.

I.  Бесконечная убывающая геометрическая прогрессия со знаменателем .

 

II.  Разложение экспоненты в ряд Маклорена

 

III. Разложение синуса в ряд Маклорена

 

IV. Разложение косинуса в ряд Маклорена

 

V.  Биномиальный ряд

 

VI.

 

VII. Разложение арктангенса в ряд Маклорена