Нормальное распределение случайной величины.
Правило трех сигм

Краткая теория


Нормальным называют распределение вероятностей непрерывной случайной величины , плотность которого имеет вид:

где  – математическое ожидание,  – среднее квадратическое отклонение .

Вероятность того, что  примет значение, принадлежащее интервалу :

где    – функция Лапласа:

Вероятность того, что абсолютная величина отклонения меньше положительного числа :

В частности, при  справедливо равенство:

Асимметрия, эксцесс, мода и медиана нормального распределения соответственно равны:

,  где

Правило трех сигм

Преобразуем формулу:

Положив . В итоге получим

если , и, следовательно, , то

то есть вероятность того, что отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонение, равна 0,9973.

Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события исходя из принципа невозможности маловероятных событий можно считать практически невозможными. В этом и состоит сущность правила трех сигм: если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

Смежные темы решебника:

Примеры решения задач


Пример 1

На станке изготавливается деталь. Ее длина X - случайная величина, распределенная по нормальному закону с параметрами a=23,0 см,σ=1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от a можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно a будут лежать практически все размеры деталей?

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

Вероятность того, что случайная величина, распределенная по нормальному закону, будет находиться в интервале :

Получаем:

 

Вероятность того, что случайная величина, распределенная по нормальному закону, отклонится от среднего не более чем на величину :

По условию

По таблице значений функции Лапласа:

По таблице значений функции Лапласа:

 

По правилу трех сигм можно считать, что практически все длины деталей с вероятностью 0,9973 будут заключены в интервале

, откуда


Пример 2

Ошибка высотометра распределена нормально с математическим ожиданием 20 мм и средним квадратичным отклонением 10 мм.

а) Найти вероятность того, что отклонение ошибки от среднего ее значения не превзойдет 5 мм по абсолютной величине.

б) Какова вероятность, что из 4 измерений два попадут в указанный интервал, а 2 – не превысят 15 мм?

в) Сформулируйте правило трех сигм для данной случайной величины и изобразите схематично функции плотности вероятностей и распределения.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

а) Вероятность того, что случайная величина, распределенная по нормальному закону, отклонится от среднего не более чем на величину :

В нашем случае получаем:

 

б) Найдем вероятность того, что отклонение ошибки от среднего значения не превзойдет 15 мм:

Пусть событие  – ошибки 2 измерений не превзойдут 5 мм и ошибки 2 измерений не превзойдут 0,8664 мм

 – ошибка не превзошла 5 мм;

 – ошибка не превзошла 15 мм

 

 

в) Для заданной нормальной величины получаем следующее правило трех сигм:

Ошибка высотометра будет лежать в интервале:

Функция плотности вероятностей:

График плотности распределения нормально распределенной случайной величины

Функция распределения:

График функции распределения нормально распределенной случайной величины


Пример 3

Случайная величина распределена по нормальному закону.

X~N(a,σ), a=25; σ=4; α=13; β=30; δ=0.1.

Требуется:

- составить функцию плотности распределения и построить ее график;

- найти вероятность того, что случайная величина в результате испытания примет значение, принадлежащее интервалу (α; β);

- найти вероятность того, что абсолютная величина отклонения значений случайной величины от ее математического ожидания не превысит δ.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

Плотность вероятности случайной величины  ,  распределенной  по нормальному закону, имеет вид:

по условию ,   . Следовательно:

Построим график плотности распределения:

 

График плотности распределения нормально распределенной случайной величины

Функция распределения для СВ , распределенной по нормальному закону, записывается следующим образом:

где  – функция Лапласа.

Найдем вероятность попадания СВ  в интервал :

Найдем вероятность того, что абсолютное отклонения меньше числа :


Пример 4

Случайная величина ξ имеет нормальное распределение с математическим ожиданием a=43 и средним квадратическим отклонением σ=5. Найти интервал симметричный относительно математического ожидания, вероятность попадания в который   P=0.94.

Решение

Вероятность того, что величина   будет отклоняться на величину :

в нашем случае:

По таблице функции Лапласа:

Искомый интервал:

Ответ:

Задачи контрольных и самостоятельных работ


Задача 1

Среднее количество осадков за июнь 19 см. Среднеквадратическое отклонение количества осадков 5 см. Предполагая, что количество осадков нормально-распределенная случайная величина найти вероятность того, что будет не менее 13 см осадков. Какой уровень превзойдет количество осадков с вероятностью 0,95?


Задача 2

Найти закон распределения среднего арифметического девяти измерений нормальной случайной величины с параметрами m=1.0 σ=3.0. Чему равна вероятность того, что модуль разности между средним арифметическим и математическим ожиданием превысит 0,5?

Указание: воспользоваться таблицами нормального распределения (функции Лапласа).


Задача 3

Отклонение напряжения в сети переменного тока описывается нормальным законом распределения. Дисперсия составляет 20 В. Какова вероятность при изменении выйти за пределы требуемых 10% (22 В).

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.


Задача 4

Автомат штампует детали. Контролируется длина детали Х, которая распределена нормально с математическим ожиданием (проектная длинна), равная 50 мм. Фактическая длина изготовленных деталей не менее 32 и не более 68 мм. Найти вероятность того, что длина наудачу взятой детали: а) больше 55 мм; б) меньше 40 мм.


Задача 5

Случайная величина X распределена нормально с математическим ожиданием a=10и средним квадратическим отклонением  σ=5. Найти интервал, симметричный относительно математического ожидания, в котором с вероятностью 0,9973 попадает величина Х в результате испытания.


Задача 6

Заданы математическое ожидание ax=19 и среднее квадратическое отклонение σ=4 нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу (α=15; β=19); 2) вероятность того, что абсолютная величина отклонения значения величины от математического ожидания окажется меньше δ=18.


Задача 7

Диаметр выпускаемой детали – случайная величина, распределенная по нормальному закону с математическим ожиданием и дисперсией, равными соответственно 10 см и 0,16 см2. Найти вероятность того, что две взятые наудачу детали имеют отклонение от математического ожидания по абсолютной величине не более 0,16 см.


Задача 8

Ошибка прогноза температуры воздуха есть случайная величина с m=0,σ=2℃. Найти вероятность того, что в течение недели ошибка прогноза трижды превысит по абсолютной величине 4℃.


Задача 9

Непрерывная случайная величина X распределена по нормальному  закону: X∈N(a,σ).

а) Написать плотность распределения вероятностей и функцию распределения.

б) Найти вероятность того, что в результате испытания случайная величина примет значение из интервала (α,β).

в) Определить приближенно минимальное и максимальное значения случайной величины X.

г) Найти интервал, симметричный относительно математического ожидания a, в котором с вероятностью 0,98 будут заключены значения X.

a=5; σ=1.3;  α=4; β=6


Задача 10

Производится измерение вала без систематических ошибок. Случайные ошибки измерения X подчинены нормальному закону с σx=10.  Найти вероятность того, что измерение будет произведено с ошибкой, превышающей по абсолютной величине 15 мм.


Задача 11

Высота стебля озимой пшеницы - случайная величина, распределенная по нормальному закону с параметрами a = 75 см, σ = 1 см. Найти вероятность того, что высота стебля: а) окажется от 72 до 80 см; б) отклонится от среднего не более чем на 0,5 см.


Задача 12

Деталь, изготовленная автоматом, считается годной, если отклонение контролируемого размера от номинала не превышает 10 мм. Точность изготовления деталей характеризуется средним квадратическим отклонением, при данной технологии равным 5 мм.

а) Считая, что отклонение размера детали от номинала есть нормально распределенная случайная величина, найти долю годных деталей, изготовляемых автоматом.

б) Какой должна быть точность изготовления, чтобы процент годных деталей повысился до 98?

в) Написать выражение для функции плотности вероятности и распределения случайной величины.


Задача 13

Диаметр детали, изготовленной цехом, является случайной величиной, распределенной по нормальному закону. Дисперсия ее равна 0,0001 см, а математическое ожидание – 2,5 см. Найдите границы, симметричные относительно математического ожидания, в которых с вероятностью 0,9973 заключен диаметр наудачу взятой детали. Какова вероятность того, что в серии из 1000 испытаний размер диаметра двух деталей выйдет за найденные границы?

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.


Задача 14

Предприятие производит детали, размер которых распределен по нормальному закону с математическим ожиданием 20 см и стандартным отклонением 2 см. Деталь будет забракована, если ее размер отклонится от среднего (математического ожидания) более, чем на 2 стандартных отклонения. Наугад выбрали две детали. Какова вероятность того, что хотя бы одна из них будет забракована?


Задача 15

Диаметры деталей распределены по нормальному закону. Среднее значение диаметра равно d=14 мм , среднее квадратическое отклонение σ=2 мм . Найти вероятность того, что диаметр наудачу взятой детали будет больше α=15 мм и не меньше β=19 мм; вероятность того, что диаметр детали отклонится от стандартной длины не более, чем на Δ=1,5 мм.


Задача 16

В электропечи установлена термопара, показывающая температуру с некоторой ошибкой, распределенной по нормальному закону с нулевым математическим ожиданием и средним квадратическим отклонением σ=10℃. В момент когда термопара покажет температуру не ниже 600℃, печь автоматически отключается. Найти вероятность того, что печь отключается при температуре не превышающей 540℃ (то есть ошибка будет не меньше 30℃).


Задача 17

Длина детали представляет собой нормальную случайную величину с математическим ожиданием 40 мм и среднеквадратическим отклонением 3 мм. Найти:

а) Вероятность того, что длина взятой наугад детали будет больше 34 мм и меньше 43 мм;

б) Вероятность того, что длина взятой наугад детали отклонится от ее математического ожидания не более, чем на 1,5 мм.


Задача 18

Случайное отклонение размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно 0,25 мм, стандартами считаются детали, размер которых заключен между 199,5 мм и 200,5 мм. Из-за нарушения технологии точность изготовления деталей уменьшилась и характеризуется средним квадратическим отклонением 0,4 мм. На сколько повысился процент бракованных деталей?


Задача 19

Случайная величина X~N(1,22). Найти P{2

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.


Задача 20

Заряд пороха для охотничьего ружья должен составлять 2,3 г. Заряд отвешивается на весах, имеющих ошибку взвешивания, распределенную по нормальному закону со средним квадратическим отклонением, равным 0,2 г. Определить вероятность повреждения ружья, если максимально допустимый вес заряда составляет 2,8 г.


Задача 21

Заряд охотничьего пороха отвешивается на весах, имеющих среднеквадратическую ошибку взвешивания 150 мг. Номинальный вес порохового заряда 2,3 г. Определить вероятность повреждения ружья, если максимально допустимый вес порохового заряда 2,5 г.


Задача 21

Найти вероятность попадания снарядов в интервал (α1=10.7; α2=11.2). Если случайная величина X распределена по нормальному закону с параметрами m=11;  σ=0.2.


Задача 22

Плотность вероятности распределения случайной величины имеет вид

Найти вероятность того, что из 3 независимых случайных величин, распределенных по данному закону, 3 окажутся на интервале (-∞;5).


Задача 23

Непрерывная случайная величина имеет нормальное распределение. Её математическое ожидание равно 12, среднее квадратичное отклонение равно 2. Найти вероятность того, что в результате испытания случайная величина примет значение в интервале (8,14)


Задача 24

Вероятность попадания нормально распределенной случайной величины с математическим ожиданием m=4 в интервал (3;5) равна 0,6. Найти дисперсию данной случайной величины.


Задача 25

В нормально распределенной совокупности 17% значений случайной величины X  меньше 13% и 47% значений случайной величины X больше 19%. Найти параметры этой совокупности.


Задача 26

Студенты мужского пола образовательного учреждения были обследованы на предмет физических характеристик и обнаружили, что средний рост составляет 182 см, со стандартным отклонением 6 см. Предполагая нормальное распределение для роста, найдите вероятность того, что конкретный студент-мужчина имеет рост более 185 см.