Построение полигона, гистограммы, кумуляты, огивы

Для наглядности строят различные графики статистического распределения, и, в частности, полигон и гистограмму.

Полигон


Полигоном частот называют ломаную, отрезки которой соединяют точки . Для построения полигона частот на оси абсцисс откладывают варианты , а на оси ординат – соответствующие им частоты . Такие точки  соединяют отрезками прямых и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки которой соединяют точки . Для построения полигона относительных частот на оси абсцисс откладывают варианты , а на оси ординат – соответствующие им относительные частоты (частости) . Такие точки  соединяют отрезками прямых и получают полигон частот.

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.


Пример 1

Построить полигон частот и полигон относительных частот (частостей):

2 7 8 15 16 17
15 35 64 55 21 10

Решение

Вычислим относительные частоты (частости):

Относительные частоты,
2 15 0.075
7 35 0.175
8 64 0.320
15 55 0.275
16 21 0.105
17 10 0.050
Итого 200 1.000

Полигон частот

Полигон относительных частот

В случае интервального ряда для построения полигона в качестве  берутся середины интервалов.

Гистограмма


В случае интервального статистического распределения целесообразно построить гистограмму.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною , а высоты (в случае равных интервалов) должны быть пропорциональны частотам. При построении гистограммы с неравными интервалами по оси ординат наносят не частоты, а плотность частоты  . Это необходимо сделать для устранения влияния величины интервала на распределение и иметь возможность сравнивать частоты.

В случае построения гистограммы относительных частот (гистограммы частостей) высоты в случае равных интегралов должны быть пропорциональны относительной частоте , а в случае неравных интервалов высота равна плотности относительной частоты .

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь - свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.


Пример 2

Построить гистограмму частот и относительных частот (частостей)

2-5 5-8 8-11 11-14 14-17 17-20
15 35 64 55 21 10

Решение

Вычислим относительные частоты:

Интервалы, Относительные частоты,
2 – 5 15 0.075
5 – 8 35 0.175
8 – 11 64 0.320
11 – 14 55 0.275
14 – 17 21 0.105
17 – 20 10 0.050
Итого 200 1.000

Гистограмма частот

Гистограмма относительных частот


Пример 3

Построить гистограмму частот (случай неравных интервалов).

2-4 4-8 8-13 13-15 15-17 17-20
15 35 64 55 21 10

Решение

Вычислим плотности частоты:

Интервалы, Длина интервала, Плотность частоты,
2 – 4 15 2 7.500
4 – 8 35 4 8.750
8 – 13 64 5 12.800
13 – 15 55 2 27.500
15 – 17 21 2 10.500
17 – 20 10 3 3.333
Итого 200 -- --

Гистограмма частот

Кроме этой задачи на другой странице сайта есть пример построения полигона и гистограммы на одном графике для интервального вариационного ряда

Кумулята и огива


При помощи кумуляты (кривой сумм) изображается ряд накопленных частот. Накопленные частоты определяются путём последовательного суммирования частот по группам и показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение. При построении кумуляты интервального вариационного ряда по оси абсцисс откладываются варианты ряда, а по оси ординат накопленные частоты, которые наносят на поле в виде перпендикуляров к оси абсцисс в верхних границах интервалов. Затем эти перпендикуляры соединяют и получают ломаную линию, т.е. кумуляту.

Если при графическом изображении вариационного ряда в виде кумуляты оси поменять местами, то получим огиву.  То есть огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака — на оси ординат.


Пример 4

Построить кумулятивную кривую:

2 5 8 11 14 17
15 35 64 55 21 10

Решение

Вычислим накопленные частоты:

Накопленные частоты,
2 15 15
7 35 50
8 64 114
15 55 169
16 21 190
17 10 200
Итого 200 --

Кумулятивная кривая