Несмещенная оценка выборочной дисперсии
Пусть из генеральной совокупности в результате независимых наблюдений над количественным признаком извлечена повторная выборка объема :
Значения признака | … | |||
Частоты | … |
При этом
Требуется по данным выборки оценить (приближенно найти) неизвестную генеральную дисперсию . Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет приводить в систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что, как можно доказать, выборочная дисперсия является смещенной оценкой , другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно:
Легко «исправить» выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Достаточно для этого умножить на дробь . Сделав это, получим исправленную дисперсию, которую обычно обозначают через :
Исправленная дисперсия является, конечно, несмещенной оценкой генеральной дисперсии. Действительно:
Итак, в качестве оценки генеральной дисперсии принимают исправленную дисперсию:
Для оценки среднего квадратического отклонения генеральной совокупности используют исправленное среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:
При достаточно больших значениях объема выборки выборочная и исправленная дисперсия отличаются мало. На практике используются исправленной дисперсией, если примерно .
Задача
Найти несмещенную выборочную дисперсию на основании данного распределения выборки.
16 | 20 | 22 | 30 | |
14 | 26 | 17 | 3 |
Решение
На сайте можно заказать решение задач, контрольных, самостоятельных, домашних работ (возможно срочное решение). Для этого вам нужно только связаться со мной:
Телеграм @helptask
ВКонтакте (vk.com/task100)
WhatsApp +7 (968) 849-45-98
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Выборочная дисперсия является смещенной оценкой генеральной дисперсии, поэтому в статистике применяют также исправленную выборочную дисперсию, которая является несмещенной оценкой генеральной дисперсии.
Сумма частот:
Вычислим среднюю:
Средняя квадратов:
Несмещенная выборочная дисперсия:
Ответ:
Кроме этой задачи на другой странице сайта есть пример расчета исправленной выборочной дисперсии и среднего квадратического отклонения для интервального вариационного ряда