Платная помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач и контрольных вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Viber или электроннной почтой.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Высшая математика и физика, теория вероятностей, линейное программирование, статистика, эконометрика, финансовая математика, методы и модели, оптимальные решения.
На цену сильно влияет срочность решения. Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Несмещенная оценка выборочной дисперсии

Краткая теория

Пусть из генеральной совокупности в результате  независимых наблюдений над количественным признаком  извлечена повторная выборка объема :

Значения признака
Частоты

При этом

Требуется по данным выборки оценить (приближенно найти) неизвестную генеральную дисперсию . Если в качестве оценки генеральной дисперсии принять выборочную дисперсию, то эта оценка будет приводить в систематическим ошибкам, давая заниженное значение генеральной дисперсии. Объясняется это тем, что, как можно доказать, выборочная дисперсия является смещенной оценкой , другими словами, математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно:

Легко «исправить» выборочную дисперсию так, чтобы ее математическое ожидание было равно генеральной дисперсии. Достаточно для этого умножить  на дробь . Сделав это, получим исправленную дисперсию, которую обычно обозначают через :

Исправленная дисперсия является, конечно, несмещенной оценкой генеральной дисперсии. Действительно:

Итак, в качестве оценки генеральной дисперсии принимают исправленную дисперсию:

Для оценки среднего квадратического отклонения генеральной совокупности используют исправленное среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии:

При достаточно больших значениях  объема выборки выборочная и исправленная дисперсия отличаются мало. На практике используются исправленной дисперсией, если примерно .

Пример решения задачи

Условие задачи

Найти несмещенную выборочную дисперсию на основании данного распределения выборки.

16 20 22 30
14 26 17 3

Решение задачи

Задали объемную контрольную? Скоро важный зачет/экзамен? Нет времени на выполнение работы или подготовку к зачету/экзамену, но есть деньги? На сайте 100task.ru можно заказать решение задач, контрольных или онлайн-помощь на зачете/экзамене ⟩⟩

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Выборочная дисперсия является смещенной оценкой генеральной дисперсии, поэтому в статистике применяют также исправленную выборочную дисперсию, которая является несмещенной оценкой генеральной дисперсии.

Сумма частот:

Вычислим среднюю:

Средняя квадратов:

Несмещенная выборочная дисперсия:

Ответ

Кроме этой задачи на другой странице сайта есть пример расчета исправленной выборочной дисперсии и среднего квадратического отклонения для интервального вариационного ряда