Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение ВКонтакте, WhatsApp или Viber. Заполнение формы с личными данными и регистрация на сайте не нужны.
Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов).
Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Коэффициент корреляции знаков Фехнера

Краткая теория

К простейшим показателям тесноты связи относят коэффициент корреляции знаков, который был предложен немецким ученым Г.Фехнером. Этот показатель основан на оценке степени согласованности направлений отклонений индивидуальных значений факторного и результативного признаков от соответствующих средних. Для его расчета вычисляют средние значения результативного и факторного признаков, а затем проставляют знаки отклонений для всех значений взаимосвязанных пар признаков.

Если ввести обозначения:  – число совпадений знаков отклонений индивидуальных величин от средней,  – число несовпадений знаков отклонений, то коэффициент Фехнера можно записать таким образом:

Коэффициент Фехнера может принимать различные значения в пределах от -1 до +1. Если знаки всех отклонений совпадут, то  и тогда показатель будет равен 1, что свидетельствует о возможном наличии прямой связи. Если же знаки всех отклонений будут разными, тогда  и коэффициент Фехнера будет равен -1, что дает основание предположить наличие обратной связи.

Пример решения задачи

Условие задачи

 

Имеются данные о поголовье крупного рогатого скота по 12 сельхозпредприятиям на 1 января и среднегодовом надое молока на одну корову. Определите частоту связи между этими факторами, используя коэффициент корреляции Фехнера.

№ п/п сельскохозяйственных предприятий Поголовье крупного рогатого скота на 1 января, тыс.голов Среднегодовой надой на одну корову, кг
1 1.2 35.8
2 1.6 30.0
3 2.8 34.8
4 1.8 31.3
5 2.9 36.9
6 3 37.1
7 1.6 27.9
8 1.7 30.0
9 2.6 35.8
10 1.3 32.1
11 2 29.1
12 3.3 34.3

Решение задачи

Если вам необходима платная помощь в учебе с решением задач по статистике, об этом подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Как заказать решение задач по статистике...

Составим расчетную таблицу:

№ п/п сельскохозяйственных предприятий Поголовье крупного рогатого скота на 1 января, тыс.голов   Среднегодовой надой на одну корову, кг        
1 1.2 35.8 1.44 1281.64 42.96
2 1.6 30 2.56 900 48
3 2.8 34.8 7.84 1211.04 97.44
4 1.8 31.3 3.24 979.69 56.34
5 2.9 36.9 8.41 1361.61 107.01
6 3 37.1 9 1376.41 111.3
7 1.6 27.9 2.56 778.41 44.64
8 1.7 30 2.89 900 51
9 2.6 35.8 6.76 1281.64 93.08
10 1.3 32.1 1.69 1030.41 41.73
11 2 29.1 4 846.81 58.2
12 3.3 34.3 10.89 1176.49 113.19
Итого 25.8 395.1 61.28 13124.15 864.89

Коэффициент Фехнера можно вычислить по формуле:

 - число совпадений знаков отклонений индивидуальных величин от средней, , - число несовпадений знаков отклонений

Средние:

      Знаки отклонений от средней Совпадение (  или несовпадение  знаков
   
1 1.2 35.8 - + b
2 1.6 30 - - a
3 2.8 34.8 + + a
4 1.8 31.3 - - a
5 2.9 36.9 + + a
6 3 37.1 + + a
7 1.6 27.9 - - a
8 1.7 30 - - a
9 2.6 35.8 + + a
10 1.3 32.1 - - a
11 2 29.1 - - a
12 3.3 34.3 + + a

Обычно такое значение показателя тесноты связи характеризует сильную зависимость, однако, следует иметь в виду, что поскольку коэффициент зависит только от знаков и не учитывает величину самих отклонений  и  от их средних величин, то он практически характеризует не столько тесноту связи, сколько ее наличие и направление.

Примеры близких по теме задач

Эмпирическое корреляционное отношение
Рассмотрено вычисление эмпирического корреляционного отношения и эмпирического коэффициента детерминации, на примере показан расчет внутригрупповой и межгрупповой дисперсии.

Ранговая корреляция
Содержится краткая теория и пример решения задачи на ранговую корреляцию. Дано понятие ранговой корреляции, показан расчет коэффициента ранговой корреляции Спирмена.