Интегрирование тригонометрических функций

Краткая теория


I Для нахождения интегралов вида:

применяются следующие тригонометрические формулы:

 

Интегралы вида

находят с помощью различных тригонометрических формул, применение которых зависит от показателей степени  и . Рассмотрим наиболее часто встречающиеся случаи.

а)  Если хотя бы одно из чисел  или  положительно и нечетно, то от нечетной степени отделяют множитель  (или ), а оставшийся множитель в четной степени преобразуют по формуле  (или ) и применяют подстановку  (или ).

 

б)  Если оба показателя  и  положительны и четны (или один из них нуль), то показатели степени уменьшают с помощью формул:

 

в) Если , то подынтегральную функцию записывают (или она уже записана) в виде дроби, в знаменателе которой выделяют множитель  (или ). Выражение

заменяют на  (или ) и применяют подстановку  (или )

Примеры вычислений интегралов такого вида под номерами 1-3.

 

II. Интегралы вида

где  – рациональная функция, аргументами которой являются  и , в общем случае приводятся к интегралам от рациональных функций с аргументом  с помощью универсальной подстановки

При этом:

Универсальная подстановка часто ведет к слишком громоздким накладкам, поэтому ее следует применять лишь в тех случаях, когда невозможно найти более легкий способ нахождения интеграла.

Если подынтегральная функция обладает одним из следующих свойств:

то для нахождения интеграла целесообразно использовать одну из подстановок  или  соответственно.

Примеры вычислений интегралов такого вида под номерами 4-7.


Методы интегрирования других видов функций:

Примеры интегрирования


Пример 1

Найти неопределенный интеграл

Решение


Пример 2

Найти неопределенный интеграл

Решение

На сайте можно заказать решение задач, контрольных, самостоятельных, домашних работ (возможно срочное решение), а также онлайн-помощь на экзамене или зачете. Для этого вам нужно только связаться со мной:

Телеграм @helptask
ВКонтакте (vk.com/task100)
WhatsApp +7 (968) 849-45-98

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту.

Подробное решение получите точно в срок или раньше.


Пример 3

Найти неопределенный интеграл

Решение


Пример 4

Найти неопределенный интеграл

Решение


Пример 5

Найти неопределенный интеграл

Решение

 

 


Пример 6

Найти неопределенный интеграл

Решение


Пример 7

Найти неопределенный интеграл

Решение