Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или Viber.
Возможно срочное решение - от суток до нескольких часов, онлайн-помощь на экзамене.
Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Стоимость решения контрольной работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ).

Разложение векторов по векторам базиса

Краткая теория

Вектор  называется линейной комбинацией векторов  векторного пространства , если он равен сумме произведений этих векторов на произвольные действительные числа:

где  – какие угодно действительные числа

Векторы  векторного пространства  называются линейно зависимыми, если существуют такие числа , не равные одновременно нулю, что

В противном случае векторы  называются линейно независимыми.

Из приведенных выше определений следует, что векторы  линейно независимы, если последнее равенство справедливо лишь при , и линейно зависимы, если равенство выполняется, когда хотя бы одно из чисел  отлично от нуля.

Можно показать, что если векторы  линейно зависимы, то по крайней мере один из них линейно выражается через все остальные. Верно и обратное утверждение о том, что если один из векторов выражается через остальные, что все эти векторы в совокупности линейно зависимые.

Примеров линейно независимых векторов являются два неколлениарных на плоскости или три некомпланарных в трехмерном пространстве, т.е. определитель, составленный из координат этих векторов должен быть не равен нулю.

Пример решения задачи

Условие задачи

Даны векторы  и  в некотором базисе. Показать, что векторы  образуют базис, и найти координаты вектора  в этом базисе.

Если ваш допуск к сессии зависит от решения блока задач, а у вас нет ни времени, ни желания садиться за расчёты – используйте возможности сайта 100task.ru. Заказ задач – дело нескольких минут. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить решение задач по высшей математике...

Решение задачи

Составим из координат векторов определитель и вычислим его:  

Определитель не равен нулю, следовательно, система векторов является линейно-независимой и образует базис трехмерного пространства.

Вектор  единственным образом разлагается по векторам этого базиса.

 

Приравнивая соответствующие координаты векторов, получаем следующую систему 3-х линейных уравнений: 

 

Решим систему уравнений методом Крамера:

 

 

 

Координаты вектора  в базисе векторов  или