Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или Viber.
Возможно срочное решение - от суток до нескольких часов, онлайн-помощь на экзамене.
Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Стоимость решения контрольной работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ).

Функция Лагранжа и метод множителей Лагранжа

Краткая теория

Метод множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации:

Среди ограничений этой задачи нет неравенств, нет условий неотрицательности переменных, их дискретности,  и функции  и  непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи дает систему уравнений (необходимые условия), которым должна удовлетворять точка , доставляющая функции  локальный экстремум на множестве точек, удовлетворяющих ограничениям (для задачи выпуклого программирования найденная точка  будет одновременно и точкой глобального экстремума).

Предположим, что в точке  функция (1) имеет локальный условный экстремум и ранг матрицы  равен . Тогда необходимые условия запишутся в виде:

где

есть функция Лагранжа;  – множители Лагранжа.

 

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (3) определяет точку экстремума функции . Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (1), (2) методом множителей Лагранжа:

1) составить функцию Лагранжа (4);

2) найти частные производные функции Лагранжа по всем переменным  и приравнять их

нулю. Тем самым будет получена система (3, состоящая из  уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат  выбрать точки, в которых функция  имеет условные локальные экстремумы при наличии ограничений (2). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.

Пример решения задачи

Условие задачи

Фирма производит товар двух видов в количествах  и . Функция полезных издержек определена соотношением . Цены этих товаров на рынке равны  и  соответственно.

Определить, при каких объемах выпуска достигается максимальная прибыль и чему она равна, если полные издержки не превосходят

Испытываете сложности с пониманием хода решения? На сайте действует услуга Решение задач по методам оптимальных решений на заказ

Решение задачи

Экономико-математическая модель задачи

Функция прибыли:

Ограничения на издержки:

Получаем следующую экономико-математическую модель:

Кроме того, по смыслу задачи

Метод множителей Лагранжа

Составим функцию Лагранжа:

Находим частные производные 1-го порядка:

Составим и решим систему уравнений:

               

 

Так как , то

Максимальная прибыль:

Ответ

Таким образом необходимо выпускать  ед. товара 1-го вида и  ед. товара 2-го вида. При этом прибыль будет максимальной и составит 270.