Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение WhatsApp, ВКонтакте или Viber. Заполнение формы с личными данными и регистрация на сайте не нужна. Мгновенная связь через в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников.
Опыт работы более 20 лет.
Оплата на карту Сбербанка (другие распространенные способы оплаты по договоренности).
Стоимость решения домашней работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ). Подробное оформление с выводами. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 1000 р. за решение билета.

Проверка гипотезы о распределении генеральной совокупности по закону Пуассона

Краткая теория

Задано эмпирическое распределение дискретной случайной величины . Требуется, используя критерий Пирсона, проверить гипотезу о  распределении генеральной совокупности по закону Пуассона.

Для того, чтобы при уровне значимости  проверить гипотезу о том, что случайная величина  распределена по закону Пуассона, необходимо:

1) Найти по заданному эмпирическому распределению выборочную среднюю .

2) Принять в качестве оценки параметра  распределения Пуассона выборочную среднюю .

3) Найти по формуле Пуассона вероятности  появления ровно i событий в  испытаниях ( , где  –максимальное число наблюдавшихся событий,  – объем выборки).

4) Найти теоретические частоты по формуле .

5) Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, приняв число степеней свободы , где  – число различных групп выборки (если производилось объединение малочисленных частот в одну группу, то  – число оставшихся групп выборки после объединения частот).

Пример решения задачи

Условие задачи

Имеются данные по числу несчастных случаев, происходящих за один день:

0 - 280 дней, 1 - 75 дней, 2 - 12 дней,  3 - 1 день.

Проверить согласуются ли полученные данные с пуассоновским распределением. Указание: найти оценку для параметра распределения Пуассона, имеющего смысл среднего числа несчастных случаев за один день, вычислить ожидаемые частоты и применить критерий Пирсона.

Решение задачи

Вычисление теоретических частот

Общее число несчастных случаев:

Вычислим среднее число несчастных случаев в день:

Предполагаемый закон Пуассона:

Оценка для параметра распределения Пуассона:

Соответствующие ожидаемые частоты:

Проверка гипотезы по критерию Пирсона

Проверим степень согласия эмпирического и теоретического распределения по критерию Пирсона:

Значения 0 1 2 3 Итого
280 75 12 1  368
278.98 77.28 10.67 1.104  
0.004 0.067 0.166 0.01 0.247

Из расчетной таблицы

Уровень значимости

Число степеней свободы

По таблице критических точек распределения:

Гипотеза о распределении числа несчастных случаев по закону Пуассона не отвергается с уровнем значимости .

Ответ

Гипотеза о распределении по закону Пуассона не отвергается.

 

Сохранить ссылку на страницу в социальной сети:

Помощь в решении ваших задач по теории вероятностей вы можете найти, отправив сообщение в ВКонтакте, WhatsApp, на Viber или заполнив форму.
Оплата на карту Сбербанка (другие распространенные способы оплаты по договоренности).
Стоимость решения домашней работы начинается от 80 р. за задачу (но не менее 300 р. за весь заказ). Подробное оформление. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 1000 р. за решение билета. Подробнее...

@100task.ru 2009-2018 Москва Спб Екатеринбург Сургут Самара Краснодар Омск