Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение WhatsApp, ВКонтакте или Viber. Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников.
Опыт работы более 20 лет.
Оплата на карту Сбербанка (другие распространенные способы оплаты по договоренности).
Стоимость решения домашней работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ). Подробное оформление с выводами. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 1000 р. за решение билета.

Схема повторных независимых испытаний. Формула Бернулли

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется  раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли, которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно  «успехом» или «неудачей».

2) вероятность «успеха»,  в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из  независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в  испытаниях появится ровно  раз, выражается формулой:

где  – вероятность «неудачи».

Эта формула называется формулой Бернулли.

Формула Бернулли позволяет избавиться от большого числа вычислений — сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой, а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события.

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Испытываете сложности с пониманием хода решения? На сайте действует услуга Решение задач по теории вероятностей на заказ

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие  – из 10 семян взойдут 8:

 

Пусть событие  – взойдет по крайней мере 8 (это значит 8, 9 или 10)

 

Пусть событие  – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

P(A)=0.2335;P(B)=0.3828;  P(C)=0.3828

Сохранить ссылку на страницу в социальной сети: