Помощь студентам - решение задач и контрольных работ

Помощь в решении ваших задач вы можете найти, отправив сообщение ВКонтакте, WhatsApp, Telegram или Viber.
Возможно срочное решение - от суток до нескольких часов, онлайн-помощь на экзамене.
Заполнение формы с личными данными и регистрация на сайте не нужны. Мгновенная связь в любое время и на любом этапе заказа. Общение с автором студенческих работ без посредников. Опыт работы более 20 лет.
Стоимость решения контрольной работы начинается от 50 р. за задачу (но не менее 300 р. за весь заказ).

Вычисление пределов функции. Первый и второй замечательные пределы

Краткая теория

Правила вычисления пределов

Если существуют

то имеют место следующие теоремы (правила вычисления пределов):

1)

 

2)

 

3)

Пример 1

Если  и  – целые многочлены и  или 0, то предел рациональной дроби:

находится непосредственно.

Пример 2

Если же , то дробь  рекомендуется сократить один или несколько раз на бином

Быть может вы оказались на этой странице, пытаясь решить задачу из контрольной работы? Если не уверены в своих силах или вам нужно качественное решение, в котором легко разобраться, на сайте 100task.ru доступны Студенческие работы на заказ по высшей математике.

Пример 3

При отыскании предела отношения двух целых многочленов относительно  при  оба члена отношения полезно предварительно разделить на , где  – наивысшая степень этих многочленов.

Аналогичный прием во многих случаях можно применять и для дробей,  содержащих иррациональности.

1)

2)

Пример 4

Выражения, содержащие иррациональности, приводятся к рациональному виду во многих случаях путем введения новой переменной.

Полагая

получаем:

 

Пример 5

Другим приемом вычисления предела от иррационального выражения является перевод иррациональности из числителя в знаменатель или, наоборот, из знаменателя в числитель.

Пример 6

Первый замечательный предел

При вычислении пределов во многих случаях используется формула первого замечательного предела:

Пример 7

Второй замечательный предел

Второй замечательный предел:

 

При вычислении пределов вида

следует иметь ввиду, что:

1) если существуют конечные пределы

то

2) если

то вопрос о решении предела

решается непосредственно

3) если

то полагают , где  при , и следовательно

где  - неперово число

Пример 8

Предел логарифма

При вычислении некоторых пределов полезно знать, что если существует и положителен

то

-----